

ASX ANNOUNCEMENT

24 FEBRUARY 2021

ASX: G1A

FINAL RESULTS FROM 2020 ABRA DRILLING PROGRAM

HIGHLIGHTS:

- Three additional drill-holes showing cumulative lead-silver intersections >50m (AB183A, AB192 and AB200A), including AB200A recorded the longest cumulative +5% lead grade intersections ever observed at Abra at 103m
- Outstanding lead-silver intersections in this announcement continue to confirm wide, high-grade mineralised zones:
 - AB200A:
 - 22.5m at 9.0% lead and 17g/t silver from 301.0m
 - 14.9m at 12.3% lead and 15g/t silver from 391.7m
 - 40.9m at 7.6% lead and 14g/t silver from 425.0m
 - o AB184 27.9m at 8.6% lead and 16g/t silver from 378.4m
 - AB176:
 - 15.9m at 11.8% lead and 28g/t silver from 378.9m
 - 13.5m at 7.7% lead and 22g/t silver from 398.9m
 - o AB183A:
 - 13.1m at 8.2% lead and 35g/t silver from 291.1m
 - 21.2m at 8.5% lead and 19g/t silver from 307.8m
 - 10.8m at 13.3% lead and 19g/t silver from 369.4m
 - o AB185 13.6m at 11.3% lead and 27g/t silver from 352.4m
 - AB177 **19.9m at 6.9% lead and 13g/t silver** from 287.2m
 - o AB198 11.9m at 10.2% lead and 48g/t silver from 271.8m
 - AB181 **17.3m at 7.0% lead and 22g/t silver** from 276.4m
 - AB191 **11.6m at 9.6% lead and 16g/t silver** from 411.4m
- 43 (75%) of the 57 drill-holes drilled in the 2020 Abra Drilling Program exceeded or met grade and thickness expectations compared to the October 2019 Resource model
- Eight holes from the program showed cumulative down-hole significant (+5% lead) lead-silver intersections >50m, including AB147, Abra's 'best hole ever'
- Optiro are well advanced in preparing an updated Mineral Resource estimate, which is expected to be completed in the coming weeks

GALENA MINING LTD.

GALENA MINING LTD. ("Galena" or the "Company") (ASX: G1A) announces the fifth and final batch of assay results from the now completed 2020 Abra Drilling Program at the Abra Base Metals Project ("Abra" or the "**Project**").

Managing Director, Alex Molyneux commented, "With these being the final assays from the 2020 Abra Drilling Program, we're already quite advanced on an updated Mineral Resource estimate for the Project. Furthermore, I believe the success of this program in defining and extending the shallow, metal rich zone on the north-eastern side of the orebody will present well for mine plan optimisation opportunities."

He went on to say, "We also thank the Bureau Veritas team in Perth for their diligence in successfully delivering over 10,000 individual sample assays, including over the Christmas period under some difficult operating conditions with Covid restrictions."

2020 ABRA DRILLING PROGRAM

This announcement concludes the release of all assay results for the 57 drill-holes successfully completed during the 2020 Abra Drilling Program.

This release includes assays from 22 drill-holes (AB176, AB177, AB180W1 to AB194, and AB196 to AB200A). The assay results for the first 35 drill-holes (AB144 to AB175, and AB178 to AB179, and AB195) were announced on 19 October 2020, 18 November 2020, 22 January 2021 and 22 February 2021.

The program was initially planned to consist of approximately 15,000 metres to 18,000 metres of drilling, with three objectives: lead-silver orebody infill; drilling into selected prospective 'metal rich' zones for potential life of mine plan optimisation; and gold-copper exploration (see Galena ASX announcement of 4 August 2020). However, drill-hole AB147 (reported on 19 October 2020) encountered 86.1 metres of combined down-hole cumulative thickness of significant intersections and was considered to be the best high-grade lead-silver drill-hole in Abra's history. AB147 was successful in confirming a 'metal rich' zone not currently in the early years of the mine plan used for the Feasibility Study, in this case a relatively shallow zone on the northeastern limb of the Indicated portion of Abra's Mineral Resource. An additional 16 drill-holes were added to the 2020 Abra Drilling Program in the area around AB147 with the aim to define the zone with 30 metre by 30 metre and better drill-hole spacing to enable its inclusion in detailed mine planning for the early years of an updated mine plan. The added drill-holes cover an area approximately 100 metres (north-south) by 200 metres (east-west), extending outside of the Indicated Resource area modelled for the Apron Zones 101 and 102 lode in the October 2019 Resource, into the Inferred area between the two northern limbs of the Indicated Resource boundary (see Figure 1 below).

Of the sixteen drill-holes added to the drilling program, the assay results for nine are being reported in this ASX announcement (AB177, AB183A, AB185, AB187A, AB190, AB193, AB194, AB198 and AB199). These holes continued to show strong cumulative down-hole thicknesses of significant lead-silver intersections as has been observed in prior holes reported in the vicinity. Drill-holes AB183A and AB177 respectively encountered 50.1 metres and 46.9 metres of combined down-hole cumulative thickness of significant intersections.

Towards the end of the 2020 Abra Drilling Program, two drill-holes being reported in this announcement (AB200A and AB192) were drilled to target another potential metal rich zone towards the south and on the eastern margin of the deposit. These drill-holes were highly successful, with some of the strongest cumulative down-hole thicknesses of significant lead-silver intersections observed to date at Abra. Drill-holes AB200A and AB192 respectively

encountered 103.0 metres and 55.2 metres of combined down-hole cumulative thickness of significant intersections.

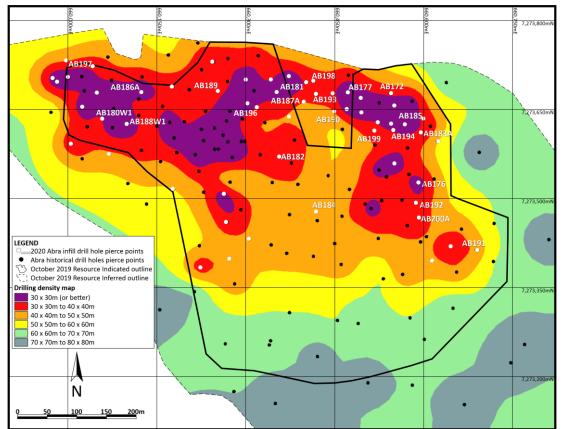


Figure 1. Abra Project drilling density following completion of the 2020 Abra Drilling Program. Showing the location of the drill-holes being reported in this ASX announcement.

Galena considers the 2020 Abra Drilling Program highly successful in comparison to the Abra October 2019 Resource. 26 of the 57 drill-holes exceeded grade and thickness expectations,17 drill-holes met and only 14 drill-holes fell below expectations, some only marginally so. Furthermore, eight of the 57 drill-holes showed cumulative down-hole significant lead-silver intersections in excess of 50 metres, more than any prior program at Abra. These included drill-hole AB147, the best high-grade lead-silver drill-hole in Abra's history in terms of cumulative thickness and grade.

DRILL-HOLE ASSAYS

Assays for 22 drill-holes (AB176, AB177, AB180W1 to AB194, and AB196 to AB200A) are being reported in this announcement, representing the last assays received from the 2020 Abra Drilling Program. The location of the reported holes and significant intersections are graphically represented in Figure 2 and Figure 3 (below) and detailed in Appendix 1, together with drill collar locations in Appendix 2.

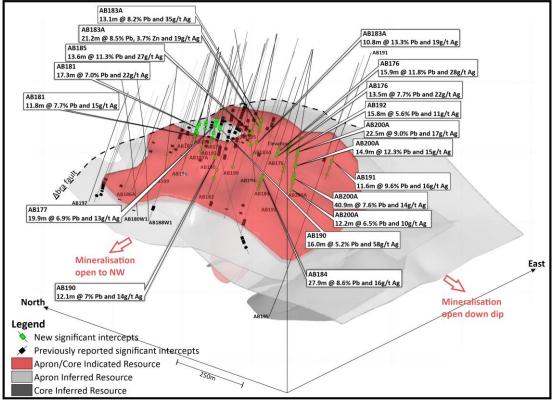


Figure 2. Isometric view looking NE, showing the most significant intercepts for some of the drill-holes reported in this ASX annoucement.

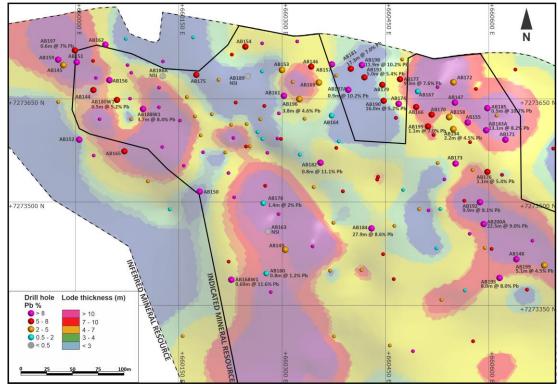


Figure 3. Plan view of Abra Apron Zone 102 (October 2019 MRE model) lode showing drill-hole pierce point, coloured according to the lead grade range, for the historical (small points) and 2020 Abra Drilling Program drill-holes (large points), over the mineralisation domain thickness contour map. A second mineralisation domain, Apron Zone 101, is positioned immediately underneath Apron Zone 102 and it extends across the deposit. Smaller mineralisation domains also occur within the apron domain, mostly within the eastern part of the deposit.

Drill-holes AB176, AB177, AB180W1 to AB194, and AB196 to AB200A provided the following significant lead-silver mineralised intersections:

- AB176
 - 4.8 at 6.3% lead and 15g/t silver from 369.3m
 - 15.9m at 11.8% lead and 28g/t silver from 378.9m
 - 13.5m at 7.7% lead and 22g/t silver from 398.9m
- AB177
 - 9.3m at 7.6% lead and 26g/t silver from 275.6m
 - \circ 19.9m at 6.9% lead and 13g/t silver from 287.2m
 - 8.5m at 10.3% lead and 26g/t silver from 324.7m
 - \circ 9.2m at 9.4% lead and 16g/t silver from 355.2m
- AB181
 - o 17.3m at 7.0% lead and 22g/t silver from 276.4m
 - 5.5m at 5.2% lead and 11g/t silver from 302.4m
 - 11.8m at 7.7% lead and 15g/t silver from 315.0m
 - \circ 3.2m at 9.4% lead and 14g/t silver from 335.4m
- AB182
 - 4.9m at 6.0% lead and 15g/t silver from 382.9m
 - \circ 8.4m at 6.8% lead and 9g/t silver from 415.2m
- AB183A
 - o 13.1m at 8.2% lead and 35g/t silver from 291.1m
 - o 21.2m at 8.5% lead and 19g/t silver from 307.8m
 - o 5.0m at 6.3% lead and 14g/t silver from 335.6m
 - 10.8m at 13.3% lead and 19g/t silver from 369.4m
- AB184
 - o 27.9m at 8.6% lead and 16g/t silver from 378.4m
 - \circ 5.3m at 5.0% lead and 10g/t silver from 419.0m
 - 10.2m at 7.2% lead and 13g/t silver from 429.8m
- AB185
 - o 5.0m at 11.5% lead and 25g/t silver from 303.3m
 - \circ 5.3m at 9.0% lead and 19g/t silver from 328.2m
 - 13.6m at 11.3% lead and 27g/t silver from 352.4m
- AB187A
 - o 5.7 at 5.4% lead and 9g/t silver from 335.1m
 - 5.2 at 5.5% lead and 9g/t silver from 349.3m
- AB188W1
- 3.7m at 8.4% lead and 21g/t silver from 361.1m
 AB189
 - 1.3m at 9.4% lead and 20g/t silver from 311.7m
 - 3.5m at 4.9% lead and 12g/t silver from 349.7m
- AB190
 - 16.0m at 5.2% lead and 58g/t silver from 275.5m
 - 12.1m at 7.0% lead and 14g/t silver from 380.6m
- AB191
 - 11.6m at 9.6% lead and 16g/t silver from 411.4m
 - 4.61m at 9.1% lead and 13g/t silver from 442.9m
 - \circ 5.23m at 5.7% lead and 8g/t silver from 469.0m
- AB192
 - o 5.7 at 5.0% lead and 13g/t silver from 325.6m
 - \circ 5.5 at 8.3% lead and 12g/t silver from 335.8m
 - \circ 9.9m at 8.1% lead and 12g/t silver from 346.0m
 - \circ 15.8m at 5.6% lead and 11g/t silver from 361.0m
 - 6.5m at 5.7% lead and 9g/t silver from 417.2m
 - 5.4m at 5.6% lead and 9g/t silver from 433.8m

- 3.2m at 9.8% lead and 11g/t silver from 464,0m
- 3.2m at 13.2% lead and 43g/t silver from 501.3m
- AB193
 - $\circ~$ 5.2m at 10.5% lead and 17g/t silver from 258.0m
 - 5.5m at 9.0% lead and 16g/t silver from 267.4m
 - 5.0m at 5.4% lead and 16g/t silver from 280.9m
- AB194
 - o 4.3m at 8.4% lead and 15g/t silver from 323.8m
 - o 7.6m at 5.1% lead and 10g/t silver from 346.7m
 - 6.0m at 5.5% lead and 12g/t silver from 362.2m
 - 4.2m at 6.5% lead and 9g/t silver from 392.5m
- AB196
 - o 3.5 at 11.3% lead and 25g/t silver from 326.2m
 - 2.3 at 10.1% lead and 25g/t silver from 351.3m
- AB197
 - o No significant intercepts
- AB198
 - \circ 11.9m at 10.2% lead and 48g/t silver from 271.8m
 - 5.6m at 4.2% lead and 13g/t silver from 293.8m
 - 7.9m at 6.2% lead and 10g/t silver from 303.9m
- AB199
 - o 4.9m at 5.4% lead and 18g/t silver from 305.0m
 - o 24.9m at 3.2% lead and 6g/t silver from 335.3m
 - 7.6m at 9.1% lead and 43g/t silver from 438.0m
- AB200A
 - \circ 3.0m at 5.9% lead and 17g/t silver from 301.0m
 - 22.5m at 9.0% lead and 17g/t silver from 338.7m
 - 4.5m at 5.7% lead and 8g/t silver from 365.9m
 - 5m at 5.1% lead and 8g/t silver from 378.6m
 - o 14.9m at 12.3% lead and 15g/t silver from 391.7m
 - \circ 40.9m at 7.6% lead and 14g/t silver from 425.0m
 - o 12.2m at 6.5% lead and 9.7g/t silver from 480.2m

UPCOMING MINERAL RESOURCE ESTIMATE UPDATE

The Company has retained Optiro Pty Ltd ("**Optiro**") to incorporate the extensive data received from the 2020 Abra Drilling Program into an independently prepared updated Mineral Resource estimate. Optiro started work on the update in December to front-load their activities to the extent possible and shorten the time between receipt of final assays and completion of the estimate. Working with information received through January and February, Optiro has largely completed re-modelling of Apron Zone mineralised domains and are currently working on re-modelling the Core Zone mineralisation. With the inclusion of the final assays being reported today into the model, an updated Mineral Resource estimate is expected to be completed within the coming weeks, enabling the commencement of an updated mine plan.

The Board of Directors of Galena authorised this announcement for release to the market.

For further information contact:

Galena Mining Ltd.,

Alex Molyneux Managing Director

Competent Person's Statement

The information in this report to which this statement is attached that relates to exploration results and drilling data is based upon information compiled by Mr Angelo Scopel, MAIG, a full time employee for Abra Mining Pty Limited. Mr Scopel has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration Targets, Mineral Resources and Ore Reserves. Mr Scopel consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

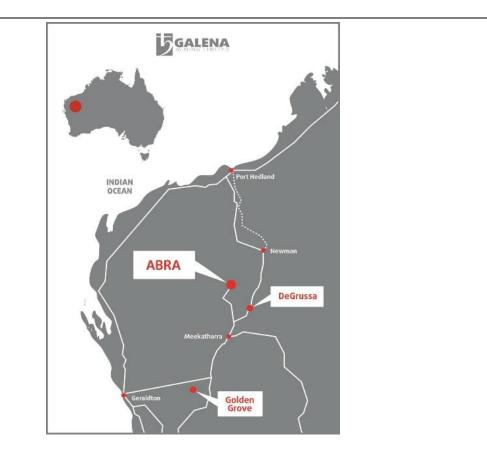
About Abra Base Metals Project

77.28% owned by Galena, the Abra Base Metals Project ("**Abra**" or the "**Project**") is a globally significant lead-silver project located in the Gascoyne region of Western Australia (between the towns of Newman and Meekatharra, approximately 110 kilometres from Sandfire's DeGrussa Project).

Abra sits on a granted Mining Lease, is fully permitted, and construction works have commenced (12% complete). Project development is being funded via a combination of an A\$90 million investment by Toho Zinc Co., Ltd. of Japan and US\$110 million of project financing debt facilities provided by Taurus Funds Management.

Galena completed an outstanding definitive / bankable feasibility study ("**FS**") (*see Galena ASX announcement of 22 July 2019*) for development of a mine and processing facility with a 16-year life producing a high-value, high-grade lead-silver concentrate containing approximately 95kt of lead and 805koz of silver per year after ramp-up. Based on a pre-development capital expenditure estimate of A\$170 million, the FS modelled a pre-tax net present value for Abra (at an 8% discount rate) of A\$553 million and an internal rate of return of 39%.¹

Note: 1. Information relating to the production target and financial information derived from the production target is extracted from the ASX announcement of 22 July 2019. Galena confirms that that all material assumptions underpinning the production target, or forecast financial information derived from a production target, in that announcement continue to apply and have not materially changed.



Abra JORC Mineral Resource estimate^{1, 2}

Resource classification	Tonnes (Mt)	Lead grade (%)	Silver grade (g/t)
Measured	-	-	-
Indicated	16.7	8.5	24
Inferred	24.4	6.5	14
Total	41.1	7.3	18

Notes: 1. See Galena ASX announcement of 17 October 2019. Galena confirms that it not aware of any new information or data that materially affects the information included in Galena's ASX announcement of 17 October 2018 and confirms that all material assumptions and technical parameters underpinning the resource estimates continue to apply and have not materially changed. 2. Calculated using ordinary kriging method and a 5.0% lead cut-off grade. Tonnages are rounded to the nearest 100,000t, lead grades to one decimal place and silver to the nearest gram. Rounding errors may occur when using the above figures.

Abra location

APPENDIX 1 – 2020 ABRA DRILLING PROGRAM DETAILS OF ASSAY RESULTS (24 FEBRUARY 2021)

Minimum lead intersection (other than where noted): 4m at 5.0% lead. Maximum consecutive internal dilution: 4m at <5.0% lead.

Minimum copper intersection: 2m at 1.0% copper.

Minimum gold intersection: 2m at 1.0ppm gold.

N.B. lower grade intersections reported for major lodes for transparency.

HOLE ID	FROM	то	INTERVAL	GRADE	GRADE	Grade Zn	GRADE	GRADE Au	Commont
	FROM		(m downhole)	Pb (%)	Ag (ppm)	(%)	Cu (%)	(ppm)	Comment
AB144	396.16	396.55	0.39	7.5	43				
AB145	376.29	377.76	1.47	5.9	18				
AB145	381.69	383.14	1.46	10.2	28				
AB146	279.48	285.8	6.32	5.7	12				
AB146	302.6	314.12	11.52	17.2	27				
AB146	350.8	356.95	6.15	8.1	11				
AB147	255.88	260.19	4.31	6.3	20				
AB147	266.22	283.73	17.51	9.5	34	2.1			
AB147	288.06	308.94	20.88	7.3	20	0.7			
Including	280	295.77	15.77	7.1	25	4.5			
AB147	321.78	357.3	35.52	15.1	22				
AB147	366.16	375.08	8.92	17.1	26				
Including	372.7	375.1	2.4	18.5	30		1.1		
AB148	396.43	407.07	10.64	8.6	17				
AB149	400.37	402.47	2.1	3.1	15				
AB149	430.22	438.12	7.9	9.1	20	0.8			
Including	430.22	433.67	3.45	11.1	25	1.6			
AB149	461.66	466.94	5.28	13.7	24				
AB149	468.85	472.6	3.75	3.9	15		1.6		
AB150	421.43	432.65	11.22	2.5	9				
AB151	334.46	361.86	27.4	16.5	73	1.3			
Including	337.31	342.46	5.15	24.8	157	6.1			
AB151	368.52	372.29	3.77	13.8	24				
AB152	394.09	395.78	1.69	24.1	193				
AB153	312.96	319.58	6.62	6.9	9				
AB153	340.19	344.42	4.23	9.7	13				
AB154	291.45	295.87	4.42	6	11				
AB154	324.28	329.32	5.04	9.6	11				
AB155	280.16	288.65	8.49	11.1	47				
AB155	300.89	313.58	12.69	5.1	18				
AB155	352	370.57	18.57	7.9	11				
AB155	380.5	386.69	6.19	7.7	12				
AB156	361.37	366.69	5.32	9.4	29				
AB157	283.47	288.89	5.42	13.9	24				
AB157	301.11	313.46	12.35	10.7	16				
AB158	316.42	324.18	7.76	8	23				
AB158	346.51	356.16	9.65	11.3	20				
AB158	373.23	377	3.77	6.1	12				

HOLE ID	FROM	то	INTERVAL (m	GRADE Pb (%)	GRADE Ag	Grade Zn	GRADE Cu (%)	GRADE Au	Comment
AB158	415.6	418.18	downhole) 2.6		(ppm)	(%)	1.5	(ppm) 1.1	
AB150 AB159	378.83	389.48	10.65	9.2	26		1.0	1.1	
AB159 AB160	448.94	466.4	17.46	5.6	17				
AB160	491.37	497.46	6.09	4.6	7				
AB161	298.52	300.08	1.6	11.5	36				
AB161	343.85	346.33	2.49	9.6	14				
AB162	353.57	357.85	4.28	16.9	26				
AB162	438.95	440.78	1.83	13.4	33				
AB164	380.34	390.14	9.8	19.1	24				
AB164	422.79	427.22	4.43	10.1	27		1.01		
AB165	397.23	414.03	16.8	6.3	94		1.01		
AB166	264.37	275.51	11.14	7.2	16				
AB166	334.84	341.63	6.79	15.4	21				
AB100 AB166	348.58	352.97	4.39	8.1	14				
AB166	340.50	382.97	4.39	0.1 7.5	14				
AB166	398.91	415.79	16.88	9.3	36				
AB100 AB166	424.22	415.79	4.94	9.5	24			0.96	
AB100 AB167		429.10 299.85	4.94 22.75	7.5	24	1		0.90	
	277.1					3.4			
Including	280.83	283.38	2.55	6.9	24 24				
	293.08	298.7	5.62	11.8		1.5			
AB167	304.32	310.12	5.8	9.4	18				
AB167	338.72	358.8	20.08	8.9	18				
AB167	363.75	369	5.25	7.6	12				
AB168W1	493.59	503.35	9.76	5	11			-	
AB168W1	507.1	518.92	11.82	6	11				
AB168W1	531.78	538.54	6.76	5.6	12				
AB169	270.61	274.1	3.49	5.1	12				
AB170	271.34	275.65	4.31	5.7	30				
AB170	297.66	308.28	10.62	6.8	22				
AB170	317.63	330.03	12.4	5.4	14				
AB170	352.65	369.24	16.59	9.2	25	0.8			
Including	353.86	357.93	4.07	5.3	15	2.2			
AB170	374	391	17	6.5	10				
AB171	308.08	325.74	17.66	8.8	30				
AB171	329.66	346.64	16.98	8.6	15				*****
AB172	259.4	265.65	6.25	4.1**	12**				**4% Lead cut-off applied
AB172	269.4	280.4	11	5.8**	32**				**4% Lead cut-off applied
AB172	288.46	312.75	24.29	10.9	24				
AB172	321.9	326	4.1	8.3	14				
AB172	342.3	352.2	9.9	18.07	31				
AB173	299.3	310.78	11.48	6.2	16				

HOLE ID	FROM	то	INTERVAL (m	GRADE	GRADE Ag	Grade Zn	GRADE	GRADE Au	Comment
			downhole)	Pb (%)	(ppm)	(%)	Cu (%)	(ppm)	•••••
AB173	404.04	417.17	13.13	8.7	16				
AB174	271	276.1	5.1	9.3	16				
AB174	309.48	315.17	5.69	5.4	19				
AB174	320.31	331.03	10.72	5.8	11				
AB174	360	392.33	32.33	13.8	34				
AB174	401.61	404.56	2.95		29		2	2.3	
AB175	NSI								
AB176	336.20	337.33	1.13	5.4	17				
AB176	369.25	374.04	4.79	6.3	15				
AB176	378.85	394.75	15.9	11.8	28				
AB176	398.91	412.43	13.52	7.7	22				
AB176	413.84	414.66	0.82				3.5	1	
AB177	275.62	284.92	9.3	7.6	26				
AB177	287.23	307.15	19.92	6.9	13				
AB177	324.68	333.14	8.46	10.3	26				
AB177	345.51	347.61	2.1	15.9	32				
AB177	355.2	364.43	9.23	9.4	16				
AB178	437.84	453.7	15.86	7.4	14				
AB179	277.66	283.94	6.28	7.3	20				
AB179	287.62	293.75	6.13	5.2	15				
AB179	297.06	302.87	5.81	5.2	10				
AB179	316.63	319.86	3.23	14	21				
AB179	331.87	336.94	5.07	5	12				
AB179	346.8	354.54	7.74	6.6	10				
AB179	361.82	369.92	8.1	7.6	12				
AB179	391.83	397.78	5.95				1.8	1.3	
AB180W1	354.38	354.88	0.5	5.2	29				
AB181	276.44	293.7	17.26	7.0	22	0.5			
Including	279.06	283.26	4.2	6.2	26	1.3			
AB181	302.38	307.84	5.46	5.2	11				
AB181	314.96	326.75	11.79	7.7	15				
AB181	335.39	338.62	3.23	9.4	14				
AB182	348.88	349.72	0.84	11.1	38				
AB182	382.91	387.81	4.9	6.0	15				
AB182	415.22	423.58	8.36	6.8	9				
AB183A	291.13	304.18	13.05	8.2	35	0.9			
Including	298.57	301.82	3.25	12.9	44	2.9			
AB183A	307.82	328.97	21.15	8.5	19	3.7			
Including	307.82	317.79	9.97	8.3	16	6.8			
AB183A	335.61	340.61	5	6.3	14				
AB183A	369.42	380.19	10.77	13.3	19				
AB184	378.36	406.25	27.89	8.6	16				
Including	379.25	383.39	4.14	5.1	14	1.7			
AB184	418.99	424.31	5.32	5.0	10				
AB184	429.81	440.03	10.22	7.2	13				

HOLE ID	FROM	то	INTERVAL (m	GRADE Pb (%)	GRADE Ag	Grade Zn	GRADE Cu (%)	GRADE Au	Comment
			downhole)		(ppm)	(%)	Cu (//)	(ppm)	
AB185	297.33	297.82	0.49	10.7	23.6				
AB185	303.25	308.27	5.02	11.5	25				
AB185	328.24	333.5	5.26	9.0	19				
AB185	352.43	366	13.57	11.3	27				
AB186A	NSI								
AB187A	279.63	280.54	0.91	10.2	26				
AB187A	335.11	340.77	5.66	5.4	9				
AB187A	349.31	354.51	5.2	5.5	9				
AB188W1	361.06	364.75	3.69	8.4	21				
AB188W1	364.75	367.18	2.43				1.6		
AB189	311.69	312.95	1.26	9.4	20				
AB189	349.73	353.18	3.45	4.9	12				
AB189	387.1	388.1	1					1.02	
AB190	275.51	291.49	15.98	5.2	58				
AB190	380.58	392.64	12.06	7.0	14				
AB191	382.97	388.1	5.13	4.5	16				
AB191	411.38	422.97	11.59	9.6	16				
AB191	442.93	447.54	4.61	9.1	13				
AB191	468.96	474.19	5.23	5.7	8				
AB192	325.55	331.21	5.66	5.0	13				
AB192	335.77	341.28	5.51	8.3	12				
AB192	346	355.94	9.94	8.1	12				
AB192	361.04	376.81	15.77	5.6	11	1.1			
Including	365.21	373.41	8.2	5.4	9	1.6			
AB192	417.18	423.64	6.46	5.7	9				
AB192	433.83	439.2	5.37	5.6	9				
AB192	464	467.16	3.16	9.8	11				
AB192	501.29	504.46	3.17	13.2	43		1.2	0.52	
AB192	506.11	507.8	1.69				1.4	0.65	
AB192	535.33	537.08	1.75				0.9	0.88	
AB192	540.69	541.8	1.11				1.0	4.52	
AB192	548.46	549.49	1.03				1.4	3.37	
AB193	257.98	263.22	5.24	10.5	17				
AB193	267.4	272.92	5.52	9.0	16				
AB193	280.85	285.88	5.03	5.4	17				
AB194	323.8	328.06	4.26	8.4	15				
AB194	346.74	354.33	7.59	5.1	10				
AB194	362.17	368.2	6.03	5.5	12				
AB194	392.49	396.71	4.22	6.5	9				
AB195	406.79	414.77	7.98	8.0	17				
AB195	541.34	546.82	5.48	12.1	12				
AB195	559.76	571.07	11.31	6.6	10				
AB195	600.14	605.82	5.68			1.9			
AB195	632.08	638	5.92			1.6			
AB195	698.1	700.06	1.96				6.9		

HOLE ID	FROM	то	INTERVAL (m downhole)	GRADE Pb (%)	GRADE Ag (ppm)	Grade Zn (%)	GRADE Cu (%)	GRADE Au (ppm)	Comment
AB195	763.75	790.65	26.9				1.4		
AB196	305.11	308.93	3.82	4.6	10				
AB196	326.17	329.66	3.49	11.3	25				
AB196	351.34	353.65	2.31	10.2	25				
AB197	363.59	364.2	0.61	6.9	18				
AB198	271.79	283.64	11.85	10.2	48				
AB198	293.79	299.35	5.56	4.2	13				
AB198	303.92	311.82	7.9	6.2	10				
AB198	305.04	309.94	4.9	5.4	18				
AB199	296.17	297.22	1.05	7.0	21				
AB199	335.28	360.2	24.92	3.2	6	2.0			
AB199	438.03	445.67	7.64	9.1	43			0.74	
AB200A	300.96	303.99	3.03	5.9	17	0.7			
AB200A	338.7	361.21	22.51	9.0	17				
AB200A	365.88	370.37	4.49	5.7	8				
AB200A	378.62	383.62	5	5.1	8				
AB200A	391.71	406.62	14.91	12.3	15	0.9			
AB200A	425	465.93	40.93	7.6	14	0.4			
Including	425	433.39	8.39	6.6	14	1.1			
AB200A	480.24	492.39	12.15	6.5	10				

* Alternative compositions for zinc and copper intersections **1% lead cutoff applied to that intercept

APPENDIX 2 – 2020 ABRA DRILLING PROGRAM COMPLETED DIAMOND CORE DRILL-HOLES AS AT 24 FEBRUARY 2021: COLLAR LOCATIONS AND DIRECTION DETAILS

Hole_ID	NAT_East	NAT_North	NAT_RL	Dip	Azimuth	Max_Depth
AB144	660022.971	7273518.888	562.068	-70.03	358.21	421
AB145	659975.233	7273556.796	564.051	-70.56	357.76	409.05
AB146	660349.659	7273599.536	555.385	-70.20	353.65	374.93
AB147	660548.926	7273549.137	552.737	-71.11	356.88	391.24
AB148	660650.112	7273271.742	543.825	-71.14	353.07	510.97
AB149	660300.153	7273292.203	549.086	-71.17	356.86	514.42
AB150	660178.642	7273366.572	552.858	-71.20	355.75	468.68
AB151	659999.009	7273609.619	564.788	-74.91	355.93	393.04
AB152	660001.068	7273461.882	560.452	-71.01	356.32	427.1
AB153	660298.146	7273603.724	556.233	-69.71	355.63	381.87
AB154	660249.946	7273635.040	557.432	-70.99	353.23	363.82
AB155	660573.670	7273530.329	552.214	-72.74	357.17	397.14
AB156	660048.686	7273554.000	561.863	-70.37	354.71	401.5
AB157	660376.440	7273617.708	555.097	-72.12	353.87	348.7
AB158	660548.429	7273547.388	552.694	-74.67	353.56	421.06
AB159	659975.005	7273558.906	564.063	-66.99	355.65	415.05
AB160	660272.531	7273257.523	548.772	-71.89	358.33	499.15
AB161	660300.640	7273546.461	555.264	-70.00	356.02	402.07
AB162	660050.090	7273605.927	562.786	-69.74	355.88	373
AB163	660272.695	7273326.086	550.097	-71.88	351.45	475.05
AB164	660374.820	7273515.602	553.996	-68.16	353.36	430
AB165	660072.484	7273437.917	558.026	-71.20	355.98	454.07
AB166	660496.409	7273582.346	553.276	-79.04	356.56	436.43
AB167	660496.347	7273583.648	553.299	-73.48	357.06	376.1
AB168	660087.478	7273383.749	555.673	-71.80	89.59	256.7
AB168W1	660087.446	7273383.726	555.663	-71.80	89.59	561
AB169	660349.647	7273599.525	555.384	-75.00	357.31	385.4
AB170	660525.478	7273537.207	552.812	-72.72	356.90	405.1
AB171	660613.809	7273487.969	550.715	-70.90	3.18	385.06
AB172	660546.223	7273623.206	553.240	-78.95	351.63	366.84
AB173	660546.015	7273442.778	550.071	-70.42	354.52	483.96
AB174	660473.712	7273587.792	553.485	-77.90	357.07	445.6
AB175	660174.116	7273576.159	558.304	-69.81	356.42	384
AB176	660597.876	7273414.505	548.863	-70.42	354.42	417.98
AB177	660473.052	7273590.391	553.469	-74.21	357.33	373.5
AB178	660251.036	7273362.230	551.450	-69.66	359.09	473.45
AB179	660450.054	7273592.813	553.794	-74.01	357.70	412.01
AB180	660051.635	7273683.254	563.429	-79.18	171.80	166.8
AB180W1	660051.660	7273683.258	563.423	-79.18	171.80	430.5
AB181	660401.205	7273598.741	554.817	-71.95	353.70	361.85
AB182	660351.736	7273435.805	552.224	-70.06	356.42	487.59
AB183	660601.313	7273555.773	552.099	-80.81	352.31	24.8
AB183A	660601.276	7273555.754	552.120	-80.81	352.31	403.81

Hole_ID	NAT_East	NAT_North	NAT_RL	Dip	Azimuth	Max_Depth
AB184	660422.381	7273328.254	548.464	-70.07	353.84	442.5
AB185	660601.244	7273553.257	551.988	-74.99	356.76	367.09
AB186	660123.035	7273561.804	559.450	-69.58	355.48	15.7
AB186A	660123.042	7273561.272	559.505	-69.70	355.56	415.28
AB187	660401.178	7273596.980	554.706	-77.79	356.58	15.8
AB187A	660401.186	7273598.186	554.757	-77.79	356.58	368.27
AB188	660098.131	7273664.703	561.571	-79.83	179.93	159.7
AB188W1	660098.129	7273664.694	561.580	-80.00	180.00	457.73
AB189	660249.383	7273636.695	557.509	-81.95	355.88	393.91
AB190	660450.039	7273592.542	553.572	-80.13	356.74	415.1
AB191	660697.699	7273273.884	543.665	-70.78	354.15	493.24
AB192	660593.280	7273409.335	548.750	-76.77	356.25	564.3
AB193	660419.157	7273621.714	554.524	-79.90	356.57	372.92
AB194	660540.119	7273664.226	553.597	-78.96	173.04	469
AB195	660618.869	7273254.871	544.131	-71.15	356.02	1000
AB196	660323.205	7273544.045	554.872	-70.16	356.28	405.5
AB197	659998.654	7273611.669	564.768	-68.09	356.43	433.11
AB198	660419.111	7273622.616	554.614	-75.00	356.00	335.11
AB199	660525.155	7273536.509	552.713	-76.20	356.31	453.92
AB200	660596.369	7273409.404	548.676	-81.55	352.36	33.8
AB200A	660596.221	7273410.619	548.753	-81.67	352.47	492.75

APPENDIX 3 – JORC CODE, 2012 EDITION: TABLE 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Mineralised intervals were diamond drilled using NQ2 diameter core, geologically logged, photographed, cut and then ½ core samples were submitted to the laboratory for analysis. Samples were oven dried, crushed, pulverised and analysed for base metals using XRF with a lithium borate flux 15% NaNO ₃ and Fused Bead Laser Ablation ICP-MS. Gold was assayed by fire assay using a 50 g charge with AAS finish.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are 	Sample intervals were based upon geological logging and ranged from 0.3 to 1.6m. Galena's sampling generally used 1m intervals. Sampling was continuous throughout the mineralised intervals with the right-hand side of the core taken. The sampling methodology is considered to be representative and appropriate for the style of mineralisation at Abra (poly-metallic lead-silver-zinc-copper-gold).
Sampling techniques	Material to the Public Report.	
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Most holes were diamond drilled from surface to minimise hole deviation using HQ diameter and reduced to NQ2 diameter at between 80 and 200m depth. Diamond drilling was by wireline methods. Completed hole depths range from 350 to 955 m. Galena's 2017 - 2020 drilling was systematically oriented using either a Reflex ACT Mk.3TM or TrueCoreTM core orientation system. The bottom of hole line was marked on the core as a reference for structural measurements. Only reliable core orientations were used for obtaining structural measurements.

Criteria	JORC Code explanation	Commentary
	Method of recording and assessing core and chip sample recoveries and results assessed.	All diamond core was measured/recorded for drilling recovery by Galena staff.
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Overall core recovery is excellent due to the silicified and competent nature of the rock with core recoveries typically being 100%.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No grade versus recovery sample biases due to loss or gain of material has been identified.
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All drill core was logged geologically and geotechnically in detail sufficient to support the Mineral Resource estimate, mining and metallurgical studies. Logging included lithology, texture, veining, grain size, structure, alteration, hardness, fracture density, RQD, alteration and, mineralisation
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Core logging was both qualitative and quantitative. Lithological observations were qualitative. All geotechnical observations and core photographs were quantitative.
	The total length and percentage of the relevant intersections logged.	100% of all core which included all mineralised intervals was logged. All core was photographed both wet and dry.
	If core, whether cut or sawn and whether quarter, half or all core taken.	All holes were routinely sampled as half cut NQ2 core for assaying.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	N/A
Sub-sampling techniques and sample preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	All core was appropriately orientated and marked up for sampling by company geologists prior to core cutting. Sample widths range from 0.3m to 3.0m. Galena's sampling was generally in 1m intervals whereas its predecessors were generally 2m intervals. Half core samples were submitted to the commercial laboratories in Perth laboratory for analysis. Sample preparation comprised industry standard oven drying, crushing, and pulverisation to less than 75 microns. Homogenised pulp material was used for assaying.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Blank samples were routinely dispatched to the laboratory to monitor sample preparation. These generally performed within acceptable tolerances. However elevated lead values were returned from some blanks which is thought to either represent cross sample contamination (i.e. soft lead caking the sample preparation bowl) or issues with the high lead values on the AAS plasma. From hole AB78 onwards barren flushes were carried out after each sample in sample preparation. The magnitude of the elevated values is not considered to be a material issue on the lead value estimates in the resource estimate.

Criteria	JORC Code explanation	Commentary
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling Whether sample sizes are appropriate to the grain size of the material being sampled. 	In Galena's 2017 to 2020 drill program replicates of crushed core and duplicates (2 nd half of crushed core) were routinely assayed. Results showed an excellent correlation demonstrating a high level of repeatability. Sample sizes were typically 3 to 6 kg (depending on the length of the sample) and are considered appropriate to the fine – medium grained grain size common in the host rock and galena mineralisation at percent grades.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Galena's samples were analysed by Bureau Veritas Laboratory in Perth/WA. The samples were analysed via XRF analysis – sulphide ore for the following elements: Ni, Cu, Co, Fe, S, MgO, CaO, SiO2, Al2O3, Mn, Zn, Cr, Cl, K2O, P2)5, Pb, As, Ti, V, LOI, and by Fused Bead Laser Ablation ICP-MS for Ag, Ba, Bi, Ce, Eu, Gd, Hf, La, Mo, Nb, Nd, Pr, Rb, Sb, Sm, Sn, Sr, Ta, Th, U, W, Zr, and by Fire Assay for Au with AAS finish for a 50g charge The analysis methods used are considered to approach total dissolution thus reporting total assay values and are appropriate for the style and tenor of mineralisation at Abra.
Quality of assay data and laboratory tests	□ For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Blanks, certified standards, replicated and duplicates were regularly submitted to the assaying laboratory and monitored. Galena completed umpire assaying by an alternate laboratory with results returned consistent with the primary samples. The QAQC data indicates that assaying data accuracy and precision is of an appropriate quality for resource estimation work.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Galena quality control procedures include the following: Blank samples – submitted at selected points within mineralised intersections at a nominal rate of 2 per 100 samples. The blank material is Bunbury basalt certified as a blank. Reference Standard samples – submitted at a rate of 1 in 20 in sequence with the original core samples. Three different certified standards are being used. Duplicates – two duplicate samples of the original samples are been taken during this drilling program. The first duplicate samples is a split of the crushed material of the original samples taken in the laboratory, and the second duplicate sample corresponds to the other half of the core (field duplicate). The duplicate samples are taken at a rate of 4 per 100 samples, over selected mineralisation styles and also through waste rock material. These are considered as true duplicates and can be used for assessing field sampling methodology and laboratory precision.
Verification of sampling and assaying	The verification of significant intersections by either independent or	All significant intersections are verified by alternative company geologists.

Criteria	JORC Code explanation	Commentary
	alternative company personnel.	
	The use of twinned holes.	Due to the depth to mineralisation no twinned holes have been attempted yet.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	During Galena's 2017- 2020 drilling program geological logging and sampling data was firstly recorded on either paper or in a Toughbook computer according to then entered into an electronic Excel and Access database files onsite. Electronic copies are backed up onsite and routinely transferred to the Perth head office. All paper documents are scanned onsite and electronic copies kept. Duplicates of the data are kept in Perth office after validation. Assay data was imported and merged directly from lab digital files in excel then later uploaded in an Access Database. All data has recently been migrated to a DatashedTM database to ensure data integrity. Galena used LogChiefTM for logging and sampling for the 2018-2020 drill programs.
	 Discuss any adjustment to assay data. 	There were no adjustments made to assay data.
	Accuracy and quality of surveys used to locate drill holes (collar and down-hole	Down hole surveys are completed every 15-30m during the drilling using using a north seeking gyro by the drilling contractor during during drilling. A selection of holes will be then later gyro surveyed by ABIMS using a north seeking gyro for quality control.
Location of data points	surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill holes were set out using a handheld GPS and then are later picked up with differential GPS. Galt Mining Solutions completed A Real Time Kinematic (RTK) GPS pickup of drill hole collars to enhance the precision of the survey, providing centimetre-level accuracy. A Department of Land Administration (DOLA) State Survey Mark (SSM) was used for the base station, the coordinates are provided in GDA94 using vertical datum AHD71.
	Specification of the grid system used.	Data captured in Map Grid of Australia GDA 94, Zone 50.
	Quality and adequacy of topographic control.	The RL of previous drill collars was measured by both DGPS surveys to an accuracy of 0.02m which gives us with a satisfactory control over the topography.
	 Data spacing for reporting of Exploration Results. 	The footprint of the Abra deposit extends 1,000m east-west along strike and 800m north south. Drill spacing ranges from 150m spaced centres on the periphery to 100 and 50m spacing in the central parts of the deposit. In some areas drill spacing is close to 50m by 25m. The deposit lies between 250m and 700 m below surface.
Data spacing and distribution	Whether the data spacing and distribution is	Drill holes in the current round of drilling is infill drilling and will improve the spacing to approximately 30 by 30m.
	sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Data spacing is sufficient to establish geological and grade continuity to establish a mineral resource estimate.
	Whether sample compositing has been applied.	No sample compositing has been applied.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The mineralisation in the Apron Zone consists of tabular shallow south dipping zones can be drilled from north or south with high intersection angles. The Core zone has steeply dipping structures that trend east-west. The majority of drill holes in the current programare oriented to the north to sample most of the identified structures in the Apron zone an unbiased manner.
	If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The Apron Zone is not considered to have any sample bias issues due to the high intersection angles of all the drilling. By virtue of is nature as a feeder zone to the Apron mineralisation, the Core Zone has drilling at low intersection angles to the mineralised structures. It is not considered that there is a sampling bias.
Sample security	The measures taken to ensure sample security.	All sampled core will be transmitted from site to Perth assay laboratories either by company personnel or by courier. All remaining core is stored on site.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Mitchell River Group completed an audit of the geological database for data up to October 2019. This audit included review and documentation of sampling and geological data integrity. No issues have been identified Optiro carried out a review of the sampling and data collection processes during the site visit to Abra in 2018 and found that
		the protocols met industry standard with no material issues.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Abra Mining holds 100% interest in the Mulgul Project, consisting of Mining Lease M52/0776, Exploration Licence E52/1455, General Purpose Leases G52/292 and G52/286 and Miscellaneous Licence L52/0121, L52/0194, L52/0198, and L52/210. A 3.0% Net Smelter Royalty exists over leases M52/0776 and E52/1455. Within the adjoining Jillawarra Project Galena Mining holds 100% of E52/1413, E52/3630, E52/3823 and E52/3575.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All tenements are in good standing and have existing Aboriginal Heritage Access Agreements in place. No mining agreement has been negotiated.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Historical exploration commenced around the Abra deposit by Amoco Minerals in 1974 but failed to discover the Abra deposit when testing the significant magnetic anomaly associated with the mineralisation. Geopeko Limited entered into a JV with Amoco in 1980 and drilled the discovery hole in 1981. 8 diamond core holes (AB1-11) were drilled before takeover by North Limited which did not complete any exploration. In 1995 RGC Exploration joint ventured in and drilled another deep diamond core hole (AB22A) with a daughter hole wedged from it (AB22B). Both North and RGC were subject to takeovers and the tenement was relinquished in 1999. Old City Nominees Pty Ltd, a private company, the acquired the ground and subsequently vended the project into Abra Mining Limited (AML). Abra resumed drilling in 2005 and completed all holes between and including AB23-61. All diamond core drilling completed by all parties was completed to a high standard and contributed towards defining the extent and limits of the mineralization AML was subsequently taken over in 2011 by Chinese company Hunan Nonferrous Metals' Australian subsidiary, HNC Resources Pty Ltd (HNC), following a lengthy acquisition process. Two diamond holes were drilled in 2012 (AB60A and AB61) HNC divested the project in 2016. Galena Mining acquired the project in 2017 and floated on the ASX. The historic exploration work on the project is of a very high standard.
Geology	 Deposit type, geological setting and style of mineralisation. 	The Abra deposit lies within sediments of the Proterozoic Edmund Group. Abra is a polymetallic base metal deposit hosted by sediments. The primary economic metal is lead (Pb). Silver (Ag), copper (Cu), zinc (Zn) and gold (Au) are also present but are of much lower tenor. The deposit can be divided into two main parts. The upper "Apron" zone comprises stratiform massive and disseminated lead- sulphides (galena) and minor copper sulphides (chalcopyrite) within a highly altered sequence of clastic and dolomitic sediments. Alteration products include jaspilitic rich sediments (the "Red Zone") and a distinctive stratiform zone of hematite-magnetite alteration (the "Black Zone". The Apron zone extends for 1,000m along strike, 700m down dip and dips gently south. The "Core" zone underlies the Apron and comprises an elongate funnel shaped body of hydrothermal breccias, veining and intense alteration overprinting gently south dipping sediments. The veining and breccia zones in the Core form a feeder style flower shaped geometry in cross section. Hydrothermal veining dips moderately south on the northern flank, sub-vertically in the central parts and gently to the north on the southern margins. High grade lead sulphide mineralisation is predominantly hosted in intensely veined zones. High grade zinc sulphide mineralisation (sphalerite) is found in the central parts of the Core. Copper (chalcopyrite) and gold mineralisation is sporadically found throughout the upper parts of the Core zone but forms a semi-coherent body at the base of Core. The Core zone extends from 300 to 750m below surface and can be traced for 400m along strike.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of 	
	the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length.	Coordinates, dip, depth and azimuth of Galena's 2020 completed holes are listed in Appendix 2.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Significant intersections are calculated as weighted average means for downhole intervals greater than 4m@5% Pb. There was no cutting of high-grades. Lower grade intersections reported for major lodes for transparency.
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	A maximum internal dilution interval of 4m@ <5% Pb was applied.
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No metal equivalent calculations were made.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	All intersection widths reported are downhole widths. The upper strata-bound mineralisation drill intercepts are interpreted as being close to true width ("Apron" mineralisation). The lower vein-hosted mineralisation has drill intercepts that, depending on drillhole orientation, may not be close to true width (true width not known) ("Core" mineralisation.

Criteria	JORC Code explanation	Commentary
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	A plan is included in the report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant results are reported and tabulated.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Galena has completed various studies as part of its FS study program, including geotechnical, metallurgical and environmental studies. To date no significant issues have been identified, Groundwater studies and test work has identified water sources suitable for processing water supplies
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The 2020 Abra resource development drilling program is ongoing and focused on: infill drilling of the Apron lead-silver orebody to support mine design work; testing selected prospective 'metal rich' zones that have potential to enhance life of mine plan optimisation; and testing prospective gold-copper zones